Stability by Linearization of Einstein's Field Equation (gebundenes Buch)

Stability by Linearization of Einstein's Field Equation

Progress in Mathematical Physics 58

106,99 €
(inkl. MwSt.)

Lieferbar innerhalb ca. einer Woche

in den Warenkorb
Bibliographische Informationen
ISBN/EAN: 9783034603034
Sprache: Englisch
Seiten: xv, 208 S.
Fomat (h/b/t): 1.7 x 24 x 16.5 cm
Auflage: 1. Auflage 2010
Bindung: gebundenes Buch

Beschreibung

V ? V ?K?, 3 2 2 R ? /?x K i i g V T G g ?T, ? G g g 4 ? R ? ? G ? T g g ? h h ? 2 2 2 2 ? ? ? ? ? ? ? h ?S, ?? ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 S T S T? T?. ? ~ T S 2 2 2 2 ? ? ? ? ? ? ? h. ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 g h h ?? g T T g vacuum M n R n R Acknowledgements n R Chapter I Pseudo-Riemannian Manifolds I.1 Connections M C n X M C M F M C X M F M connection covariant derivative M ? X M ×X M ?? X M X,Y ?? Y X ? Y ? Y ? Y X +X X X 1 2 1 2 ? Y Y ? Y ? Y X 1 2 X 1 X 2 ? Y f? Y f?F M fX X ? fY X f Y f? Y f?F M X X ? torsion ? Y?? X X,Y X,Y?X M. X Y localization principle Theorem I.1. Let X, Y, X, Y be C vector ?elds on M.Let U be an open set

Inhalt

Preface // I Pseudo-Riemannian Manifolds: I.1 Connections / I.2 Firsts results on pseudo-Riemannian manifolds / I.3 Laplacians / I.4 Sobolev spaces of tensors on Riemannian manifolds / I.5 Lorentzian manifolds // II Introduction to Relativity: II.1 Classical fluid mechanics / II.2 Kinematics of the special relativity / II.3 Dynamics of special relativity / II.4 General relativity / II.5 Cosmological models / II. 6 Appendix: a theorem in affine geometry // III. Approximation of Einstein''s Equation by the Wave Equation: III.1 Perturbations of Ricci tensor / III.2 Einstein''s equation for small perturbations of the Minkowski metric / III.3 Action on metrics of diffeomorphisms close to identity / III.4 Continuing the calculation of Section 2 / III.5 Comparison with the classical gravitation // IV. Cauchy Problem for Einstein''s Equation with Matter: IV.1 1. Differential operators in an open set of Rn+1 / IV.2 Differential operators in vector bundles / IV.3 Harmonic maps / IV.4 Admissible classes of stress-energy tensors / IV.5 Differential operator associated to Einstein''s equation / IV.6 Constraint equations / IV.7 Hyperbolic reduction / IV.8 Fundamental theorem / IV.9 An example: the stress-energy tensor of holonomic media / IV.10 The Cauchy problem in the vacuum // V. Stability by Linearization of Einstein''s Equation, General Concepts: V.1 Classical concept of stability by linearization of Einstein''s equation in the vacuum / V.2 A new concept of stability by linearization of Einstein''s equation in the presence of matter / V.3 How to apply the definition of stability by linearization of Einstein''s equation in the presence of matter / V.4 Change of notation / V.5 Technical details concerning the map f / V.6 Tangent linear map of f // VI. General Results on Stability by Linearization when the Submanifold M of V is Compact: IV.1 1. Adjoint of D(g,k) f / VI.2 Results by A. Fischer and J. E. Marsden / VI.3 A result by V. Moncrief / VI.4 Appendix: general results on elliptic operators in compact manifolds // VII. Stability by Linearization of Einstein''s Equation at Minkowski''s Initial Metric: VII.1 A further expression of D(g,k) f / VII.2 The relation between Euclidean Laplacian and stability by linearization at the initial Minkowski''s metric / VII.3 Some proofs on topological isomorphisms in Rn / VII.4 Stability of the Minkowski metric: Y. Choquet-Bruhat and S. Deser''s result / VII.5 The Euclidean asymptotic case: generalization of a result by Y. Choquet-Bruhat, A. Fischer and J. E. Marsden // VIII. Stability by Linearization of Einstein''s Equation in Robertson-Walker Cosmological Models: VIII.1 Euclidean model / VIII.2 Hyperbolic model / VIII.3 Sobolev spaces and hyperbolic Laplacian / VIII.4 Spherical model / VIII.5 Universes that are not simply connected // References